Quick look at Apache Flink

What is Apache Flink? According to Apache Flink’s website:

Stateful Computations over Data Streams

Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale.

https://flink.apache.org

We will install and try few examples using Google Colab.

Use the following steps

  • Download Apache Flink
  • Start local cluster (start-cluster.sh)
  • Run example python scripts/jars which comes with binary distribution (flink-1.18.0/examples)
  • Write your own data pipelines and use Flink for compution (Try Apache Beam)
  • Use UI to inspect jobs history or submit new jobs (port 8081)
  • Stop the cluster (stop-cluster.sh)

Examples

Binary distribution has number of examples including WordCount (word_count.py).

Install the following Python packages:

  • apache_beam
  • apache_flink


import logging
import sys

from pyflink.common import WatermarkStrategy, Encoder, Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode
from pyflink.datastream.connectors.file_system import (FileSource, StreamFormat, FileSink,
                                                       OutputFileConfig, RollingPolicy)


word_count_data = ["To be, or not to be,--that is the question:--",
                   "Whether 'tis nobler in the mind to suffer",
                   "The slings and arrows of outrageous fortune",
                   "Or to take arms against a sea of troubles,",
                   "And by opposing end them?--To die,--to sleep,--",
                   "No more; and by a sleep to say we end",
                   "The heartache, and the thousand natural shocks",
                   "That flesh is heir to,--'tis a consummation",
                   "Devoutly to be wish'd. To die,--to sleep;--",
                   "To sleep! perchance to dream:--ay, there's the rub;",
                   "For in that sleep of death what dreams may come,",
                   "When we have shuffled off this mortal coil,",
                   "Must give us pause: there's the respect",
                   "That makes calamity of so long life;",
                   "For who would bear the whips and scorns of time,",
                   "The oppressor's wrong, the proud man's contumely,",
                   "The pangs of despis'd love, the law's delay,",
                   "The insolence of office, and the spurns",
                   "That patient merit of the unworthy takes,",
                   "When he himself might his quietus make",
                   "With a bare bodkin? who would these fardels bear,",
                   "To grunt and sweat under a weary life,",
                   "But that the dread of something after death,--",
                   "The undiscover'd country, from whose bourn",
                   "No traveller returns,--puzzles the will,",
                   "And makes us rather bear those ills we have",
                   "Than fly to others that we know not of?",
                   "Thus conscience does make cowards of us all;",
                   "And thus the native hue of resolution",
                   "Is sicklied o'er with the pale cast of thought;",
                   "And enterprises of great pith and moment,",
                   "With this regard, their currents turn awry,",
                   "And lose the name of action.--Soft you now!",
                   "The fair Ophelia!--Nymph, in thy orisons",
                   "Be all my sins remember'd."]


def word_count(input_path, output_path):
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.BATCH)
    # write all the data to one file
    env.set_parallelism(1)

    # define the source
    if input_path is not None:
        ds = env.from_source(
            source=FileSource.for_record_stream_format(StreamFormat.text_line_format(),
                                                       input_path)
                             .process_static_file_set().build(),
            watermark_strategy=WatermarkStrategy.for_monotonous_timestamps(),
            source_name="file_source"
        )
    else:
        print("Executing word_count example with default input data set.")
        print("Use --input to specify file input.")
        ds = env.from_collection(word_count_data)

    def split(line):
        yield from line.split()

    # compute word count
    ds = ds.flat_map(split) \
           .map(lambda i: (i, 1), output_type=Types.TUPLE([Types.STRING(), Types.INT()])) \
           .key_by(lambda i: i[0]) \
           .reduce(lambda i, j: (i[0], i[1] + j[1]))

    # define the sink
    if output_path is not None:
        ds.sink_to(
            sink=FileSink.for_row_format(
                base_path=output_path,
                encoder=Encoder.simple_string_encoder())
            .with_output_file_config(
                OutputFileConfig.builder()
                .with_part_prefix("prefix")
                .with_part_suffix(".ext")
                .build())
            .with_rolling_policy(RollingPolicy.default_rolling_policy())
            .build()
        )
    else:
        print("Printing result to stdout. Use --output to specify output path.")
        ds.print()

    # submit for execution
    env.execute()


if __name__ == '__main__':
    logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--input',
        dest='input',
        required=False,
        help='Input file to process.')
    parser.add_argument(
        '--output',
        dest='output',
        required=False,
        help='Output file to write results to.')

    argv = sys.argv[1:]
    known_args, _ = parser.parse_known_args(argv)

    word_count(known_args.input, known_args.output)

Using Apache Beam

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
import apache_beam.transforms.window as window

def run():
    options = PipelineOptions([
        "--runner=FlinkRunner",
    ])

    with beam.Pipeline(options=options) as p:
        (p
            | 'Create words' >> beam.Create(['to be or not to be'])
            | 'Split words' >> beam.FlatMap(lambda words: words.split(' '))
            | 'Write to file' >> WriteToText('test.txt')
        )

if __name__ == "__main__":
    run()

Screenshots – Apache Flink UI

Apache Flink

Worth looking into FlinkSQL.

FlinkSQL